A Pencil Balancing Robot using a Pair of AER Dynamic Vision Sensors

نویسنده

  • J. Conradt
چکیده

Balancing a normal pencil on its tip requires rapid feedback control with latencies on the order of milliseconds. This demonstration shows how a pair of spike-based silicon retina dynamic vision sensors (DVS) is used to provide fast visual feedback for controlling an actuated table to balance an ordinary pencil. Two DVSs view the pencil from right angles. Movements of the pencil cause spike address-events (AEs) to be emitted from the DVSs. These AEs are transmitted to a PC over USB interfaces and are processed procedurally in real time. The PC updates its estimate of the pencil’s location and angle in 3d space upon each incoming AE, applying a novel tracking method based on spike-driven fitting to a model of the vertical shape of the pencil. A PD-controller adjusts X-Y-position and velocity of the table to maintain the pencil balanced upright. The controller also minimizes the deviation of the pencil’s base from the center of the table. The actuated table is built using ordinary highspeed hobby servos which have been modified to obtain feedback from linear position encoders via a microcontroller. Our system can balance any small, thin object such as a pencil, pen, chop-stick, or rod for many minutes. Balancing is only possible when incoming AEs are processed as they arrive from the sensors, typically at intervals below millisecond ranges. Controlling at normal image sensor sample rates (e.g. 60 Hz) results in too long latencies for a stable control loop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Modeling and Construction of a New Two-Wheeled Mobile Manipulator: Self-balancing and Climbing

Designing the self-balancing two-wheeled mobile robots and reducing undesired vibrations are of great importance. For this purpose, the majority of researches are focused on application of relatively complex control approaches without improving the robot structure. Therefore, in this paper we introduce a new two-wheeled mobile robot which, despite its relative simple structure, fulfills the req...

متن کامل

Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina) to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a...

متن کامل

Parameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm

In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated nume...

متن کامل

بهبود یادگیری رفتار روبات سیار دارای خطا در سنسورهای آن با استفاده از شبکه بیزین

In this paper a new structure based on Bayesian networks is presented to improve mobile robot behavior, in which there exist faulty robot sensors. If a robot likes to follow certain behavior in the environment to reach its goal, it must be capable of making inference and mapping based on prior knowledge and also should be capable of understanding its reactions on the environment over time. Old ...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009